Hivemind: Custom Pipelines

What Are Hivemind Custom Pipelines?

Hivemind custom pipelines expose the full set of tools used internally to construct company exposures.

They allow users to build end-to-end pipelines by combining structured data (from FeatureHub and elsewhere), unstructured data, and GenAI-driven transformations into custom, point-in-time derived signals.

Pipelines are fully configurable, with user-defined inputs, processing nodes / instructions, and outputs.

They can be used to create bespoke exposures, risk / alpha signals, or entirely new analytical artifacts beyond the standard Hivemind objects.

UI Access

Custom pipelines can be built and inspected in the ForecastOS UI, where users visually compose nodes, configure transformations, and access outputs.

Hivemind Custom Pipeline

API Access

Pipeline run creation and associated outputs are accessible via API.

Example: Running Pipelines via API

curl -X POST "https://app.forecastos.com/api/v1/pipelines/<PIPELINE_ID>/runs" \
-H "Authorization: Bearer YOUR_API_TOKEN" \
-H "Content-Type: application/json" \
-d '{
  "generate_charts": true,
  "use_latest_data_only": false,
  "start_date": "2025-01-01",
  "end_date": "2026-01-01",
  "variables": {
    "var1": "value1",
    "var2": "value2"
  }
}'

Body Parameters

Parameter Type Default Required Description
generate_charts boolean pipeline default No If true, charts will be automatically generated once pipeline results are complete.
use_latest_data_only boolean pipeline default No If true, only the latest available data will be used for the pipeline run. Otherwise, a start and end date can be provided to limit the data range.
latest_data_as_of_date string current date No The reference date for the latest data, set this if use_latest_data_only is true. Must be in YYYY-MM-DD format.
start_date string "2016-01-01" No Only include data published from this date. Set this if use_latest_data_only is false. Must be in YYYY-MM-DD format.
end_date string current date No Only include data published up to this date. Set this if use_latest_data_only is false. Must be in YYYY-MM-DD format.
variables object - Yes A dictionary of variables for the pipeline. Must include keys for all expected pipeline variables.

Response

{
  "id": 101,
  "pipeline_id": 6,
  "status": "running",
  "created_at": "2026-01-12T18:22:14.050Z"
}

Example: Fetching Pipeline Run Results via API

curl -X GET "https://app.forecastos.com/api/v1/pipelines/<PIPELINE_ID>/runs/<PIPELINE_RUN_ID>" \
-H "Authorization: Bearer YOUR_API_TOKEN" \
-H "Content-Type: application/json"

This returns a time-series CSV containing company-level results for your pipeline run.

Open-Source Access

The open-source ForecastOS Python library provides helpers for consuming pipeline outputs and integrating them into downstream research, risk, and portfolio workflows.

Example: Running Pipelines via OS

import forecastos as fos

run_pipeline_response = fos.Pipeline.run_pipeline(
  pipeline_id=6,
  config={
    "generate_charts": True,
    "use_latest_data_only": True,
    "start_date": "2025-01-01",
    "end_date": "2026-01-01",
    "variables": {
      "var1": "value1",
      "var2": "value2"
    }
}
)

Config Parameters

Parameter Type Default Required Description
generate_charts boolean pipeline default No If true, charts will be automatically generated once pipeline results are complete.
use_latest_data_only boolean pipeline default No If true, only the latest available data will be used for the pipeline run. Otherwise, a start and end date can be provided to limit the data range.
latest_data_as_of_date string current date No The reference date for the latest data, set this if use_latest_data_only is true. Must be in YYYY-MM-DD format.
start_date string "2016-01-01" No Only include data published from this date. Set this if use_latest_data_only is false. Must be in YYYY-MM-DD format.
end_date string current date No Only include data published up to this date. Set this if use_latest_data_only is false. Must be in YYYY-MM-DD format.
variables object - Yes A dictionary of variables for the pipeline. Must include keys for all expected pipeline variables.

Example: Fetching Pipeline Run Results via OS

df_pipeline_run_results = fos.Pipeline.get_df(pipeline_id=6, run_id=19)

This returns a time-series DataFrame containing company-level results for your pipeline run.

Next: Hivemind Risk Applications

Let's explore Hivemind Risk Applications next.